

6.12

Pilot operated proportional directional valves

Type 4WRZ(E) and 4WRH

NG 10 to 32 Up to 350 bar Up to 1600 L/min

Contents

Function and configuration	02-03
Ordering code	04
Symbols	05
Technical data	06
Electrical connections, plug-in connectors	07
Characteristic curves	08-11
Unit dimensions	12-15

Features

- Pilot operated proportional directional valve to control the direction and magnitude of a flow
- Operation is by proportional solenoids with central thread and detachable coil
- For subplate mounting: Porting pattern to ISO 4401 and DIN 2430
- Spring centered control spool
- 4WRZE: Integrated electronics (OBE) with voltage input or current input (A1 resp. F1)
- 4WRZ: associated control electronics (separate order)

Function and configuration

· Pilot valve type 3DREP 6...

The pilot valve is a proportional solenoid operated 3-way pressure reducing valve. It is used to convert an electrical input signal into a proportional pressure output signal and is used on all 4WRZ... valves. The proportional solenoids are controllable DC wet pin solenoids with central thread and detachable coil. The solenoid is optionally controlled by external electronics (type WRZ...) or integrated electronics (type WRZE...).

Design:

The valve basically consists of:

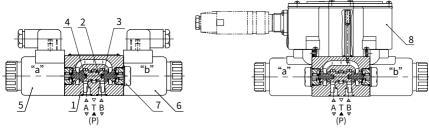
- Housing (1)
- Control spool (2) with pressure measuring spools (3 and 4)
- Solenoids (5 and 6) with central thread
- Optionally with integrated electronics (8)

Work principle

- When the solenoids (5 and 6) are in the de-energized condition, the control spool (2) is held by compression springs in the central position

– Direct operation of the control spool (2) by energizing a proportional solenoid, e.g. energization of solenoid "a" (5). Pressure measuring spool (3) and control spool (2) are shifted to the left in proportion to the electrical input signal; Connection from P to B and A to T through the orifice-like cross sections with progressive flow characteristics; De-energization of the solenoid (5), control spool (2) is returned to the central position by the compression spring, In the central position, ports A and B are open to T, i.e. the hydraulic fluid can flow to the tank without any restrictions.

– Manual override, optional, with the help of it, the control spool (2) can be moved without requiring the energization of the solenoid.


Notes:

Type 3DREP 6: Draining of the tank line must be prevented. In the case of a corresponding installation situation, a pre-load valve is to be installed (pre-load pressure approx. 2 bar).

Pilot valve with two spool positions

(Type 3DREP 6...B...)

In principle, the function of this valve version corresponds to that of the valve with three spool positions. However, this 2-position valve is provided with solenoid "a" (5) only. Instead of the 2nd proportional solenoid, a plug screw (7) is fitted.

Type 3DREP6...

Type 3DREPE6...

Function and configuration

• Pilot operated proportional directional valves Type 4WRZ...

Valves of type 4WRZ... are pilot operated 4-way directional valves with operation by proportional solenoids. They control the direction and magnitude of a flow.

Design:

The valves basically consist of:

– A pilot valve (9) with proportional solenoids (5 and 6), control spool (2) and orifice plugs (15)

- A main valve (10) with main spool (11) and centering spring (12)

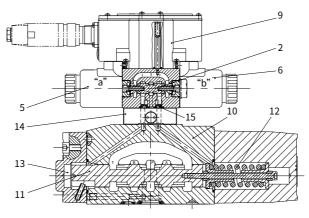
Work principle

– When the solenoids (5 and 6) are de-energised, the main spool (11) is held by centering springs (12) in the central position.

– Operation of the main spool (11) through the pilot valve (9), the main spool is moved proportionally, depending on the spool position, flow from P to A and B to T(R) or P to B and A to T(R).

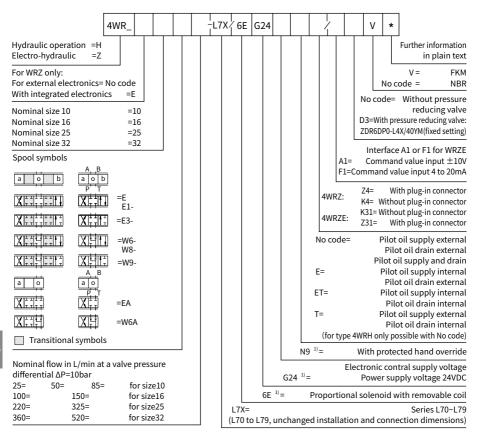
e.g. by energising solenoid "b" (6), the control spool (2) is shifted to the right, pilot oil is fed through the pilot valve (9) into the pressure chamber (13) and moves the main spool (11) in proportion to the electrical input signal; Connection from P to A and B to T through orifice-like cross-sections with progressive flow characteristics.

De-energization of the solenoid (6), the control spool (2) and main spool (11) are returned to the central position.


- Pilot oil supply to the pilot valve internally via port P or externally via port X.

– With the help of an optional manual override the control spool (2) can be moved without requiring the energization of the solenoid.

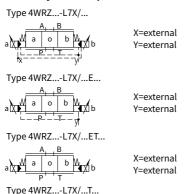
Notes:


Type WRH: The pilot pressure in the main valve must not exceed 25 bar.

Type WRZ: For system pressures above 100bar the type D3 pilot pressure reducing module(14) must be fitted between pilot valve (9) and main valve (10).

Type 4WRZE...

Ordering code


Note:	With symbols	s E1- and W8-:	With symbo	ls E3- and W9-:
	$P \rightarrow A: q_{v max}$	$B \rightarrow T: q_{v/2}$	$P \rightarrow A: q_{v max}$	$B \rightarrow T$: closed
	$P \rightarrow B: q_{v/2}$	$A \rightarrow T: q_{v max}$	$P \rightarrow B: q_{v/2}$	$A \rightarrow T: q_{v max}$

With spools W6-, W8-, W9- and W6A in the neutral position, there is a connection from A to T and B to T with approx. 2% of the relevant nominal cross-section.

1) Omitted for 4WRH and 4WRZ without pilot valve.

Symbols(simplified)

With electrohydraulic operation and for external electronics

a o b to b

Type 4WRZ...A-L7X/...E...

Type 4WRZ...A-L7X/...

o

Type 4WRZ...A-L7X/...ET...

Type 4WRZ...A-L7X/...T...

With electrohydraulic operation and for external electronics

Type 4WRZE...-L7X/...

$$a \square A_{1} \square B_{1} \square b$$

$$A \square A_{1} \square B_{1} \square b$$

$$A \square A_{2} \square A_{1} \square B_{1} \square b$$

$$Y = external$$

o b W

╷<u></u>

′=external

X=external

Y=external

X=external

Y=external

X=external

Y=external

X=external Y=external

Type 4WRZE...A-L7X/...

Type 4WRZE...A-L7X/...E...

Type 4WRZE...A-L7X/...ET...

Type 4WRZE...A-L7X/...T...

Type 4WRH...A-L7X/...

$$a,x = -$$

aD

Type 4WRZE...-L7X/...T...

Type 4WRZE...-L7X/...ET

а

With hydraulic operation

Type 4WRH...-L7X/... a,x - a o b W

$$a,x = -a o M$$

Technical data

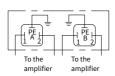
General				
Valve type			WRZ	WRZE
Installation optional, preferably			ably horizontal	
Storage tem	perature range	°C	-20 to +80	
Ambient temperature range		°C	-20 to +70 -20 to +50	
	NG10	kg	7.8	8.0
Weight	NG16	kg	13.4	13.6
	NG25	kg	18.2	18.4
	NG32	kg	42.2	42.4

Hydraulic (measured with HLPAG.p=100bar : 40 °C \pm 5 °C)								
Nominal size				10	16	25	32	
On and in a	-Pilot valve		ot oil supply	bar	30 to 100 bar			
Operating pressure	-Pilot valve	Internal pil	Internal pilot oil supply bar		100 to 350 with "D3" only			
pressure	-Main valve			bar	up to 315	up to 350	up to 350	up to 350
Return flow	-Port T (port (external pil			bar	up to 315	up to 250	up to 250	up to 150
pressure	-Port T(inter	mal pilot oil	drain)	bar	up to 30	up to 30	up to 30	up to 30
	-Port Y	-Port Y		bar	up to 30	up to 30	up to 30	up to 30
Pilot oil volume i	input signal 0	- 100 %		cm ³	1.7	4.6	10	26.5
Pilot oil flow in port X and Y with a stepped input signal 0- 100 %			L/min	3.5	5.5	7	15.9	
Flow of the main valve			L/min	up to 170	up to 460	up to 870	up to 1600	
Hydraulic fluid					Mineral oil (HL, HLP) to DIN 51524 Further fluids on enquiry!			
Hydraulic fluid temperature range °C			°C	-20 to +80 (preferably +40 to +50)				
			mm ² /s	20 to 380 (preferably 30 to 46)				
Maximum permissible degree of conta Degree of pressure fluid is to NAS 1638 or ISO 440								
contamination	- Pilot valve	e NAS 1638 class 7				x=5		
	- Main valve	NAS 1638 class 9			x=15			
Hysteresis %				%	≤ 6			

Electrical						
Valve type			WRZ	WRZE		
Type of protect	tion of the valve to EN 60529 IP65 with cable socket mounted and l			e socket mounted and locked		
Voltage type	Voltage type					
Command value overlap		%	15			
Max. current		A	1.5	2.5		
Solenoid coil	Cold value at 20°C	Ω	4.8	2		
resisance	Max. warm value	Ω	7.2	3		
Duty %			100	100		
Coil temperature °C			up to 150	up to 150		
Valve protection to EN 60529				IP65 with mounted and fixed plug-in connector		

Control electro	onics			
External amplifi	ier for type WRZ		VT-VSPA2-1-L2X/	
Command	-Voltage input "A1"	V	±10	
value signal	-Current input "F1"	mA	4 to 20	

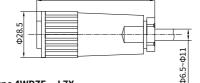
Electrical connections, plug-in connectors


nominal dimensions in mm

• For type 4WRZ...L7X (without integrated electronics)

Connections on the component plug

Plug-in connector to DIN EN 175301-803 or ISO 4400


Connections on the plug-in connector

For type 4WRZE ...L7X (with integrated electronics (OBE))

For pin allocation also see block circuit diagram.

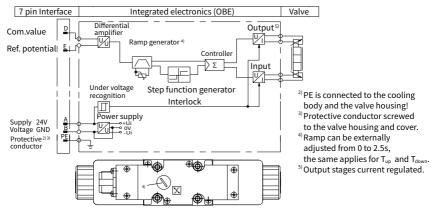
Plug-in connector to DIN FN 175201-804

73.5

Integrated control electronics for type 4WRZE ... L7X **Component plug allocation**

	Contact	Interface A1 signal	Interface F1 signal	
Supply	A	24 VDC(U(t)=19V to 35V)		
voltage	В	GND		
	С	n.c. ¹⁾		
Differential	D	±10V, Re>50KΩ	4 to 20mA, Re>100Ω	
amplifier input	E	reference potentio	nal command value	
	F	n.c. ¹⁾		

Connection cable:

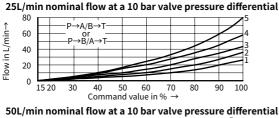

Recommended: - up to 25 m cable length type LiYCY 5×0.75 mm² - up to 50 m cable length type LiYCY 5×1.0 mm². For outside diameter see plug-in connector sketch. Only connect screen to PE on the supply line.

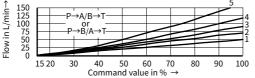
¹⁾Contacts C and E must not be connected!

Command value:

A positive command value 0 to +10V (or 12 to 20 mA) at D and the reference potential at E results in a flow from P to A and B to T. A negative command value 0 to -10V (or 12 to 4 mA) at D and the reference potential at E results in a flow from P to B and A to T. For a valve with 1 solenoid on side a (e.g. spool variants EA and WA) a positive command value at D and the reference potential at E results in a flow from P to B and A to T.

Integrated electronics (OBE) for type 4WRZE...L7X

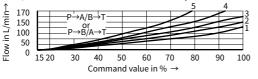


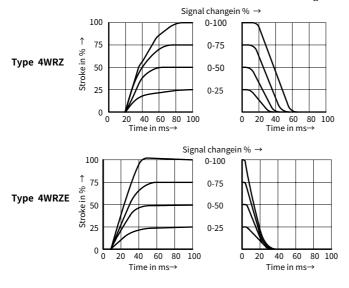


Characteristic curves (measured with spools "E, W6-, EA, W6A" and HLP46, 9_{oil}=40°C ±5°C, P=100bar)

NG 10

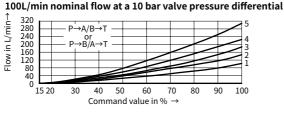
1 Δp=10bar constant 2 Δp=20bar constant


 $3 \Delta p=30 bar constant$


 $4 \Delta p=50 bar constant$

 $5 \Delta p=100 bar constant$

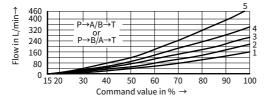
 Δp =Valve pressure differential (inlet pressure p_p minus load pressure p_L minus return pressure p₋)



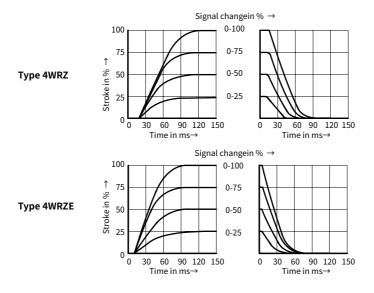
Transient function with a stepped form of electrical input signal P_{st}= 50bar

Characteristic curves (measured with spools "E, W6-, EA, W6A" and HLP46, ∂_{oil}=40°C ±5°C , P=100bar)

NG 16

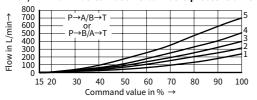


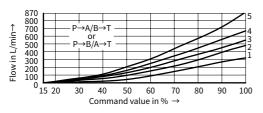
 $1 \Delta p=10 bar constant$ $2 \Delta p=20 bar constant$ $3 \Delta p=30 bar constant$ $4 \Delta p=50 bar constant$


5 ∆p=100bar constant

 $\begin{array}{l} \Delta p = Valve \ pressure \ differential \\ (inlet \ pressure \ p_{_{p}} \ minus \ load \\ pressure \ p_{_{L}} \ minus \ return \\ pressure \ p_{_{T}}) \end{array}$

150L/min nominal flow at a 10 bar valve pressure differential


Transient function with a stepped form of electrical input signal P_{et} = 50bar

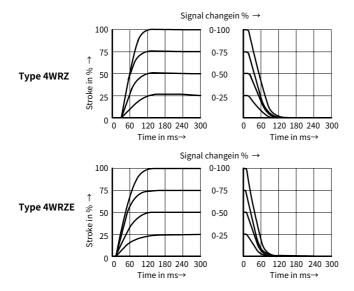

Characteristic curves (measured with spools "E, W6-, EA, W6A" and HLP46, ϑ_{oii} =40°C ±5°C , P=100bar)

NG 25

220L/min nominal flow at a 10 bar valve pressure differential

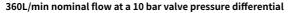
325L/min nominal flow at a 10 bar valve pressure differential

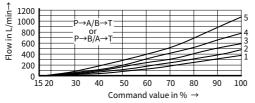
 $1 \Delta p=10bar constant$ $2 \Delta p=20bar constant$


3 ∆p=30bar constant

 $4 \Delta p$ =50bar constant

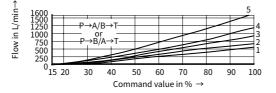
5 ∆p=100bar constant

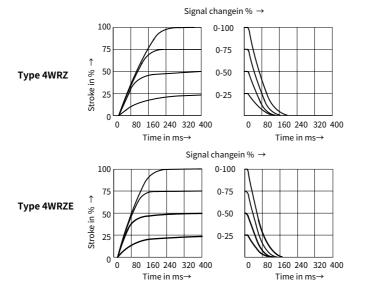

 $\begin{array}{l} \Delta p = \mbox{Valve pressure differential} \\ (inlet pressure p_{p} minus load \\ pressure p_{L} minus return \\ pressure p_{T}) \end{array}$


Transient function with a stepped form of electrical input signal P_{st}= 50bar

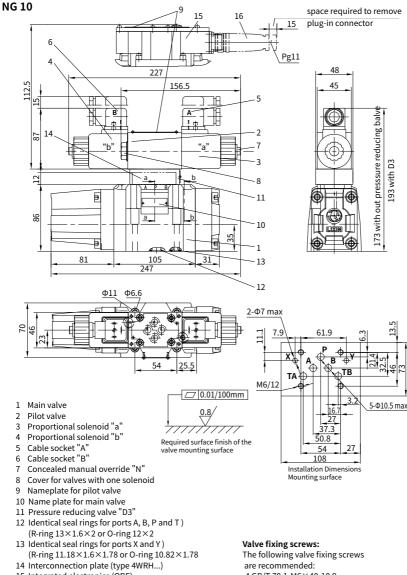
$\label{eq:characteristic curves} (measured with spools "E, W6-, EA, W6A" and HLP46, \vartheta_{oil} = 40^{\circ}C \pm 5^{\circ}C \ , P = 100 bar)$

NG 32

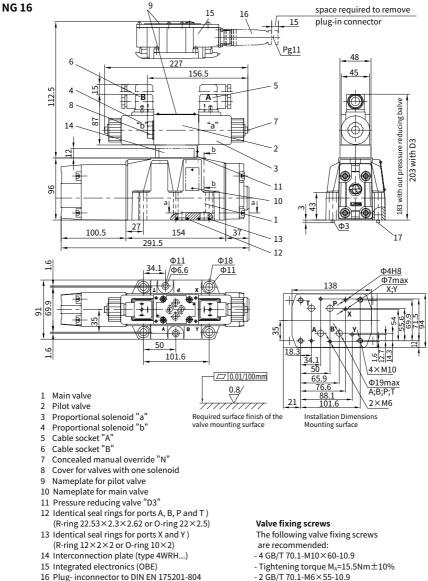



 $1 \Delta p$ =10bar constant Δp =20bar constant Δp =30bar constant Δp =50bar constant Δp =100bar constant

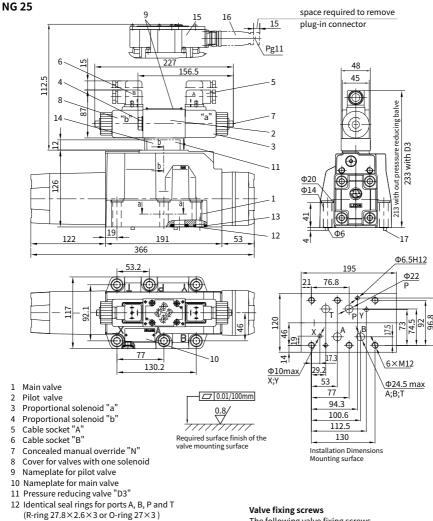
 Δp =Valve pressure differential (inlet pressure p_p minus load pressure p_L minus return pressure p_T)


520L/min nominal flow at a 10 bar valve pressure differential

Transient function with a stepped form of electrical input signal P_{st}= 50bar

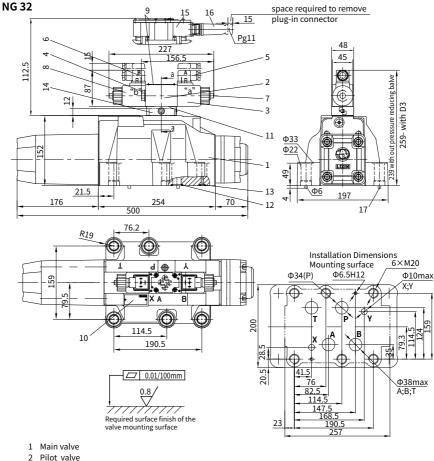

(Dimensions in mm)

- 15 Integrated electronics (OBE)
- 16 Plug- in connector to DIN EN 175201-804
- -4 GB/T 70.1-M6×40-10.9
- Tightening torque M_A=15.5Nm±10%


17 Locating pin

(Dimensions in mm)

- 2 GB/T 70.1-M6×55-10.9
 - Tightening torque M_A=15.5Nm±10%


(Dimensions in mm)

- 13 Identical seal rings for ports X and Y (R-ring 19×3×3 or O-ring 19×3)
- 14 Interconnection plate (type 4WRH...)
- 15 Integrated electronics (OBE)
- 16 Plug- inconnector to DIN EN 175201-804
- 17 Locating pin

The following valve fixing screws are recommended: - 6 GB/T 70.1 - M12×60-10.9 - Tightening torque M_A=130Nm±20%

(Dimensions in mm)

- 3 Proportional solenoid "a"
- 4 Proportional solenoid "b"
- 5 Cable socket "A"
- 6 Cable socket "B"
- 7 Concealed manual override "N"
- 8 Cover for valves with one solenoid
- 8 Cover for valves with one sole
- 9 Nameplate for pilot valve
- 10 Nameplate for main valve
- 11 Pressure reducing valve "D3"
- 12 Identical seal rings for ports A, B, P and T (R-ring 42.5×3×3 or O-ring 42×3)
- 13 Identical seal rings for ports X and Y (R-ring $19 \times 3 \times 3$ or O-ring 19×3)

- 14 Interconnection plate (type 4WRH...)
- 15 Integrated electronics (OBE)
- 16 Plug- inconnector to DIN EN 175201-804
- 17 Locating pin

Valve fixing screws

- The following valve fixing screws
- are recommended:
- 6 GB / T 70.1 M20×60 10.9
- Tightening torque M_{A} = 430Nm \pm 20%